208 research outputs found

    Stronger computational modelling of signalling pathways using both continuous and discrete-state methods

    Get PDF
    Starting from a biochemical signalling pathway model expresses in a process algebra enriched with quantitative information, we automatically derive both continuous-space and discrete-space representations suitable for numerical evaluation. We compare results obtained using approximate stochastic simulation thereby exposing a flaw in the use of the differentiation procedure producing misleading results

    Scalable Analysis of Scalable Systems

    Get PDF
    Abstract. We present a systematic method of analysing the scalability of large-scale systems. We construct a high-level model using the SRMC process calculus and generate variants of this using model transformation. The models are compiled into systems of ordinary differential equations and numerically integrated to predict non-functional properties such as responsiveness and scalability.

    Performance modelling with the Unified Modelling Language and stochastic process algebras

    Get PDF

    Replicating Web Services for Scalability

    Get PDF
    Abstract. Web service instances are often replicated to allow service provision to scale to support larger population sizes of users. However, such systems are difficult to analyse because the scale and complexity inherent in the system itself poses challenges for accurate qualitative or quantitative modelling. We use two process calculi cooperatively in the analysis of an example Web service replicated across many servers. The SOCK calculus is used to model service-oriented aspects closely and the PEPA calculus is used to analyse the performance of the system under increasing load.

    Modelling the influence of RKIP on the ERK signalling pathway using the stochastic process algebra PEPA

    Get PDF
    This paper examines the influence of the Raf Kinase Inhibitor Protein (RKIP) on the Extracellular signal Regulated Kinase (ERK) signalling pathway [5] through modelling in a Markovian process algebra, PEPA [11]. Two models of the system are presented, a reagent-centric view and a pathway-centric view. The models capture functionality at the level of subpathway, rather than at a molecular level. Each model affords a different perspective of the pathway and analysis. We demonstrate the two models to be formally equivalent using the timing-aware bisimulation defined over PEPA models and discuss the biological significance

    An efficient algorithm for aggregating PEPA models

    Get PDF
    Performance Evaluation Process Algebra (PEPA) is a formal language for performance modeling based on process algebra. It has previously been shown that, by using the process algebra apparatus, compact performance models can be derived which retain the essential behavioral characteristics of the modeled system. However, no efficient algorithm for this derivation was given. We present an efficient algorithm which recognizes and takes advantage of symmetries within the model and avoids unnecessary computation. The algorithm is illustrated by a multiprocessor example

    Rigorous Graphical Modelling of Movement in Collective Adaptive Systems

    Get PDF

    A Stochastic Broadcast Pi-Calculus

    Get PDF
    In this paper we propose a stochastic broadcast PI-calculus which can be used to model server-client based systems where synchronization is always governed by only one participant. Therefore, there is no need to determine the joint synchronization rates. We also take immediate transitions into account which is useful to model behaviors with no impact on the temporal properties of a system. Since immediate transitions may introduce non-determinism, we will show how these non-determinism can be resolved, and as result a valid CTMC will be obtained finally. Also some practical examples are given to show the application of this calculus.Comment: In Proceedings QAPL 2011, arXiv:1107.074

    Bisimulation of Labeled State-to-Function Transition Systems of Stochastic Process Languages

    Get PDF
    Labeled state-to-function transition systems, FuTS for short, admit multiple transition schemes from states to functions of finite support over general semirings. As such they constitute a convenient modeling instrument to deal with stochastic process languages. In this paper, the notion of bisimulation induced by a FuTS is proposed and a correspondence result is proven stating that FuTS-bisimulation coincides with the behavioral equivalence of the associated functor. As generic examples, the concrete existing equivalences for the core of the process algebras ACP, PEPA and IMC are related to the bisimulation of specific FuTS, providing via the correspondence result coalgebraic justification of the equivalences of these calculi.Comment: In Proceedings ACCAT 2012, arXiv:1208.430
    corecore